CONFIDENTIAL COPY **263** RM E51E03 CA RM E51E03 6678 ## RESEARCH MEMORANDUM ALTITUDE INVESTIGATION OF 16 FLAME-HOLDER AND FUEL-SYSTEM CONFIGURATIONS IN TAIL-PIPE BURNER By Ralph E. Grey, H. G. Krull, and A. F. Sargent Lewis Flight Propulsion Laboratory Cleveland, Ohio | wassification cancelled (or | changed to ShorkssiFiED | |-----------------------------|---| | By Authority of Man | SECH TUB ANDUNCEMENT TO STANSE) | | Ву | 505 60 | | NAME AND | • | | ςς | Hers. | | GRADE OF OFFICER MAKIN | IC CHANGE) | | Marian Alexander | strandonps | This material contains information affecting the National Defense of the United States within the meaning of the explonage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON December 12, 1951 COMEIDENTIA 319.98/13 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM #### ALTITUDE INVESTIGATION OF 16 FLAME-HOLDER AND FUEL-SYSTEM #### CONFIGURATIONS IN TAIL-PIPE BURNER By Ralph E. Grey, H. G. Krull, and A. F. Sargent #### SUMMARY An investigation was conducted in an altitude chamber at the NACA Lewis laboratory to determine the performance of 16 flame-holder and fuel-system configurations in a short converging conical tail-pipe burner having a two-position exhaust nozzle. During the investigation, the engine was operated at rated engine speed, at a constant flight Mach number of 0.6, and over a range of tail-pipe-burner fuel-air ratios and altitudes. Of the various configurations investigated, the best combustion performance and operable limits were obtained with a V-gutter flame holder and a radial fuel-injection system that provided a uniform fuel distribution over the flame holder and an increased mixing length between the fuel injectors and the flame holder. The maximum altitude limit obtained with one of the V-gutter flame holders was about 58,000 feet. The combustion efficiency, exhaust-gas temperature, and specific fuel consumption were only slightly affected by increases in altitude to 40,000 feet. The maximum altitude limits of the H-gutter and the H-gutter with a trailing V-gutter flame holders were 40,000 and 44,000 feet, respectively. The combustion efficiency and exhaust-gas temperature decreased and the specific fuel consumption increased rapidly with an increase in altitude for these configurations. With the jet nozzle open, starting by spark plug ignition was limited to altitudes of 30,000 feet and lower, whereas starts by the hot-streak ignition technique were obtained at all altitudes up to 45,000 feet, which was the maximum altitude at which starts were attempted. #### INTRODUCTION The altitude performance and operating characteristics of several types of flame-holder and fuel-injection system installed in the tail-pipe burner of a J35-A-21 turbojet engine were investigated in a 10-foot altitude test chamber at the NACA Lewis laboratory. The purpose of this 2176 investigation was to obtain a flame-holder and fuel-system configuration that would provide efficient combustion in a relatively short tail-pipe burner up to altitudes of at least 40,000 feet. Sixteen flame-holder and fuel-system configurations were investigated; ten configurations were supplied by the engine manufacturer and six were designed by NACA (based on information in reference 1). The tail-pipe burner, which was supplied as part of the engine, had a short converging conical burner section and a two-position exhaust nozzle. The outer shell of the tail-pipe burner remained unaltered during the investigation. Each configuration was operated over a range of altitudes at a flight Mach number of 0.6. The data obtained for each configuration are presented in a manner to show the effects of fuel distribution and flame-holder design on net thrust, specific fuel consumption, exhaust-gas temperature, combustion efficiency, operable range of tail-pipe-burner fuel-air ratios, and maximum altitude limit. The combustion stability during tail-pipe-burner operation is also described and typical flame-holder failures that occurred during the investigation are discussed. #### APPARATUS AND INSTRUMENTATION #### Installation The engine was installed in an altitude chamber as shown in figures 1 and 2. The engine was mounted on a thrust platform, which was connected through linkage to a calibrated balanced air-pressure diaphragm for measuring the thrust. The altitude chamber is 10 feet in diameter and 60 feet long. A honeycomb is installed in the chamber upstream of the test section to straighten and smooth the flow of inlet air. The forward baffle, which incorporated a labyrinth seal around the forward end of the engine, was used to separate the engine-inlet air from the exhaust and to provide a means of maintaining a pressure difference across the engine. A 14-inch butterfly valve was installed in the forward baffle to provide cooling air for the engine compartment. The rear baffle was installed to act as a radiation shield and to prevent recirculation of exhaust gases about the engine. The exhaust gas from the jet nozzle was discharged into an exhaust diffuser to recover some of the kinetic energy of the jet. Combustion in the burner was observed through a periscope located directly behind the engine. #### Engine and Tail-Pipe Burner A J35-A-21 engine, which includes a tail-pipe burner, was used in this investigation. The engine has a static sea-level thrust rating of 5100 pounds without tail-pipe burning at rated engine speed, 7900 rpm, and at a turbine-outlet temperature of 1300° F. At this operating condition, the air flow is approximately 86 pounds per second and the fuel consumption is 5740 pounds per hour. The over-all length of the engine is approximately 195 inches and the maximum diameter is 43 inches. The main components of the engine are an 11-stage axial-flow compressor, eight cylindrical through-flow combustors, a single-stage turbine, and a tail-pipe burner. Throughout the investigation, MIL-F-5624 fuel with a lower heating value of 18,900 Btu per pound and a hydrogen-carbon ratio of 0.179 was used in the engine and tail-pipe burner. Drawings of the tail-pipe-burner assembly are schematically shown in figure 3. The tail-pipe-burner assembly was $87\frac{1}{2}$ inches long and consisted of three sections: (1) an annular diffuser followed by a short cylindrical section, (2) a converging conical burner, and (3) a two-position clamshell-type exhaust nozzle. The eyelids on this nozzle were secured in the open position throughout the investigation. The area of the exhaust nozzle in the open position was approximately 349 square inches. Fuel was supplied to the tail-pipe burner by an air-turbine fuel pump which was driven by air bled from the compressor. Two flame-holder positions and two diffuser inner cones were used during the investigation. Flame-holder position 1 and the standard diffuser inner cone are shown in figure 3(a). Flame-holder position 2 and the modified diffuser inner cone are shown in figure 3(b). Position 1, which was the standard location for the engine manufacturer's flame holders, was located in the 6-inch cylindrical section about $2\frac{1}{2}$ inches downstream of the diffuser-outlet flange. Position 2 was located in the diffuser section about 4 inches upstream of the diffuser-outlet flange. The modified diffuser inner cone consisted of a standard diffuser inner cone cut off at the downstream end where the diameter was 6 inches and a cup section having a depth of $3\frac{1}{8}$ inches was installed at this point to provide a sheltered region for burning. The details of the flame holders and fuel systems will be discussed later. Shell cooling of the burner section was accomplished by an ejector cooling shroud, which used the exhaust jet to induce a flow of cooling air over the burner shell. In the present investigation, the air for the burner cooling shroud was obtained from the test section of the altitude chamber at a pressure approximately equal to the altitude ambient pressure and at a temperature of about 100° F. Two types of tail-pipe-burner ignition system were used. For the 10 manufacturer's configurations, ignition was provided by two spark plugs projecting into the sheltered region of the outer annular gutter. For the NACA configurations, ignition was provided by a momentary increase in fuel flow to one of the engine combustors (reference 1). This excess fuel in one combustor caused a burst of flame through the turbine, thereby igniting the tail-pipe-burner fuel. #### Flame Holders and Fuel Systems Ten commercial flame-holder and fuel-system units (figs. 4 and 5), four NACA flame holders (fig. 6), and four NACA fuel-injection systems (fig. 7), in various combinations were investigated in the 16 configurations presented in this report. These configurations are classified into five basic types: - (1) H-gutter flame holder with radial and annular fuel-injection manifold, configurations A through D - (2) H-gutter flame holder with trailing V-gutter and radial and annular fuel-injection manifold, configurations E through I - (3) Annular V-gutter flame holder with radial and annular fuelinjection manifold, configuration J - (4) Annular V-gutter flame holder with radial fuel injectors, configurations K through 0 - (5) Radial V-gutter flame holder with radial fuel injectors, configuration P The flame-holder and fuel-system units of configurations A through J were supplied by the engine manufacturer. The H-gutter of configurations A through I consisted of two parallel sides connected by a crossmember with holes to meter fuel and air into the sheltered region downstream of the flame holder. The annular trailing V-gutters (typical installation shown in fig. 4(d)) had an included angle of 36° , were $1\frac{1}{2}$ inches wide,
and had a diameter generally intermediate between the diameters of the two annular H-gutters. The flame holder of configuration J was constructed of V-gutters. The fuel for these configurations was injected through radial and annular tubes immediately upstream of the flame holder. The fuel system of configuration K and the fuel-system and flame-holder configurations L through P were NACA designs. All flame holders for these configurations were constructed of V-gutters. The fuel for these configurations was introduced normal to the direction of gas flow through radial fuel injectors. A detailed description of each configuration is presented in table I. A comparison of the five basic configuration types is shown in the following table: | Conf
rat | igu-
ion | | ŀ | lame hold | er | Fuel system | | | | | |-------------|---------------------|-------------------------------|-----------------------------|---|--|------------------------------|--------------------|---|--|--| | Гуре | Fig-
ure | Gutte
cros
sect
Type | ss
ion | Projected
blocked
area
(percent) | Remarks | Fuel mixing length (in.) (a) | Injector
figure | Remarks | | | | 1 | 4(a)
and
4(b) | H | 5(a)
to
5(c) | 25.5
to
30.9 | 2 to 3 annu-
lar gutters | 1/8
to
1 <u>5</u> | | Annular tubes
connected by
radial tubes | | | | 2 | 4(c)
to
4(f) | Η-∇ | 5(b)
5(d)
and
5(e) | 36.2
to
43.3 | 2 annular H- gutters with 1 or 2 trail- ing V-gutters 4 to 6 inches downstream | 8 | | Same | | | | 3 | 4(g) | ٧ | 5(f) | 28.9 | 2 annular
gutters | $6\frac{1}{2}$ | | Same except
tubes were
streamlined | | | | 4 | | ٧ | 6(a)
to
6(c) | 28.9
to
35.2 | 2 annular
gutters | 3 to
10 | 7(a)
to
7(c) | Radial tubes | | | | 5 | | V | 6(d) | 26.6 | Short radial
gutters con-
nected by
one annular
gutter | 5 <u>5</u> 8 | 7(d) | Radial tubes | | | ^aMixing length is defined as distance from point of fuel injection to leading edge of flame holder. Each part of the flame holder and fuel system is numbered on the photographs of figure 4 (configurations A through J) and details of the corresponding part are given in table II. #### Instrumentation Pressures and temperatures were measured at several stations in the engine and tail-pipe burner (fig. 2). Engine air flow was measured by use of survey rakes mounted at the engine inlet. Pressure and temperature instrumentation was installed to compute engine midframe air bleed and the air bleed from the compressor outlet that was used to drive the air turbine of the tail-pipe-burner fuel pump. A complete pressure and temperature survey was obtained at the turbine outlet (station 5, fig. 8(a)), and several of the 30 thermocouples at station 5 were used to obtain an indicated turbine-outlet temperature during operation. Static pressure measurements were taken at the burner inlet (station 6, fig. 8(b)) and total pressures were measured with a water-cooled survey rake at the exhaust-nozzle inlet (station 7, fig. 8(c)) 5 inches upstream of the exhaust-nozzle outlet. Engine and tail-pipe-burner fuel flows were measured by calibrated rotameters. #### PROCEDURE Tail-pipe-burner performance data were obtained over a range of tail-pipe-burner fuel-air ratios at a simulated flight Mach number of 0.6 and the following simulated altitudes: | Altitude (ft) | | | | | (| COI | ıf: | igi | ırı | at: | io | 1 | | | | | |---------------|----|---|---|---|---|-----|-----|-----|-----|-----|----|---|---|---|---|---| | 10,000 | A | B | C | D | | | | H | | J | | L | | | 0 | P | | 30,000 | A: | В | C | D | E | F | G | H | I | J | K | L | M | N | 0 | P | | 35,000 | | | | D | E | | | | | | | | | | | | | 40,000 | : | В | | | E | | | H | | J | K | L | М | N | 0 | P | The engine-inlet-air total temperature and total pressure were regulated to correspond to NACA standard total temperature and pressure assuming 100-percent ram pressure recovery at each flight condition. The symbols used in this report and the methods used in calculating the results are given in the appendix. Due to a questionable radiation effect on the thermocouples at the turbine outlet, the turbine-outlet temperature was calculated as shown in the appendix. This calculated temperature was used in plotting all curves presenting turbine-outlet data. Two fuel-air ratios are defined and used in computing and plotting the results of the investigation: . 7 - (1) The tail-pipe-burner fuel-air ratio (f/a)_t is defined as the ratio of the tail-pipe-burner fuel flow to the engine air flow (air flow entering the compressor minus air bled from the compressor). This fuel-air ratio was used when only flight condition, rpm, and tail-pipe-burner fuel flow were recorded. The values of engine air flow were taken from an engine air-flow calibration curve. - (2) The unburned-air tail-pipe-burner fuel-air ratio (f/a)_{ua} is defined as the ratio of the tail-pipe-burner fuel flow to the unburned-air flow entering the tail pipe (engine air flow minus the air burned in the engine). This fuel-air ratio was used when complete performance data were obtained. The tail-pipe burner was started at a simulated flight Mach number of 0.6 and rated engine speed of 7900 rpm with the exhaust nozzle in the open position. For altitudes up to 30,000 feet, the tail-pipe burner was ignited and performance was obtained over a range of tail-pipe-burner fuel-air ratios. At altitudes above 30,000 feet, the tail-pipe burner was ignited at 30,000 feet, the simulated altitude was increased to the desired value, and data were obtained over a range of tail-pipe-burner fuel-air ratios. At each flight condition with the engine operating at rated speed, the tail-pipe-burner fuel flow was varied from a minimum to a maximum. The minimum fuel flow was determined by: (1) imminent blow-out, or (2) a control limit (minimum flow rate of standard engine fuel regulator). The maximum fuel flow was determined by: (1) the indicated limiting turbine-outlet temperature of 1300° F (1760° R) measured by the operating thermocouples at station 5, (2) control limit (maximum flow rate of fuel regulator), (3) rough burning, or (4) blow-out. To determine the maximum operable altitude the burner was operated at constant fuel flow and flight Mach number while altitude was increased until blow-out occurred. Because actual blow-out of the burner was usually quite sudden, operating technique may account for scatter in the data of about ± 2000 feet. #### RESULTS AND DISCUSSION #### Operational Limits The operational limits of all configurations are plotted in figure 9 against the tail-pipe-burner fuel-air ratio $(f/a)_t$. The four kinds of operational limits encountered, which were discussed in the procedure, are defined by the symbols of figure 9. For configurations A, B, C, and O, the maximum operable altitude was not determined but it is believed that this limit was generally about the same as the altitude limit obtained for other configurations of the same basic type. The performance data and operational limits were not obtained at an altitude of 10,000 feet for some configurations because the flame holder was extremely hot and the service life under these conditions was very short. The maximum altitude limit for basic configuration types 1 and 2 was generally about 40,000 feet with configurations E and H (basic type 2) reaching 44,000 feet. The altitude limit of basic configuration type 3 was about 45,000 feet, whereas that of basic types 4 and 5 was generally above 50,000 feet with configuration M (basic type 4) reaching 58,000 feet. The rich operational limits of basic configuration types 1 and 2 generally resulted from blow-out, rough burning, or fuel-regulator limitations, whereas configuration types 3, 4, and 5 were restricted by limiting turbine-outlet temperatures. The occurrence of this limiting turbine-outlet temperature condition at relatively low fuel-air ratios indicates that basic configurations types 3, 4, and 5 were operating at higher combustion efficiencies than configuration types 1 and 2. With the exception of configuration A, rough burning was encountered with all H-gutter configurations at rich fuel-air ratios. Rough burning would start suddenly with an attendant increase in noise level and vibration. When the fuel-air ratio was increased after rough burning was encountered, the noise level and vibration increased. An examination of the tail-pipe burner after such operation revealed broken and loosened bolts. In general, blow-out of basic configuration types 1, 2, and 3 was characterized by the flame shifting to the lower half of the flame holder and gradually diminishing until blow-out, whereas in configuration types 4 and 5, blow-out occurred suddenly. A comparison of the operational limits of configurations B, H, J, L, and P, which represent the best operational limits and performance characteristics of each of the five basic configuration types, is shown in figure 10. Although configuration C appeared to be better than configuration B, it was not used for this comparison because the engine-inlet total temperature was 23° to 37° F below the NACA standard total temperature for all data obtained at an altitude of 30,000 feet. Of all the configurations investigated, basic configuration types 4 and 5 had the highest altitude limits. An evaluation of these data indicates that the altitude limit was increased by the combined effects of (1) radial fuel injection with uniform distribution over the flame holder, (2) increased fuel mixing length, and (3) a V-gutter instead of H-gutter flame holder. #### Performance Characteristics The performance data obtained for each of the 16 configurations with a fixed-area conical exhaust nozzle is presented in table III. Performance data for
five configurations, B, H, J, L, and P, are summarized in figures 11 through 16. These configurations were previously indicated to have the best operational limits and performance characteristics of each of the five basic configuration types. Performance data were plotted against the unburned-air tail-pipe-burner fuel-air ratio $(f/a)_{us}$. With the exhaust nozzle fixed in the open position, the burnerinlet conditions varied with fuel-air ratio as shown in figure 11. general, the turbine-outlet total temperature and pressure increased with tail-pipe-burner fuel-air ratio, whereas the burner-inlet velocity remained approximately constant. The turbine-outlet temperature survey used during operation for part of the investigation was found to be insufficient when later compared to the average of 30 thermocouples at station 5 and to the calculated value of turbine-outlet temperature. Consequently, some configurations were operated above limiting temperature. In such cases, the limiting turbine-outlet temperature operating point is indicated on the curves. A comparison of combustion efficiencies and exhaust-gas temperatures for the five representative configurations over a range of fuel-air ratios at various altitudes is shown in figure 12. At an altitude of 30,000 feet and limiting turbine-outlet temperature (1760° R), configuration type 4 reached a combustion efficiency of 72 percent at a fuelair ratio of 0.035 and a peak combustion efficiency of 85 percent was obtained at a fuel-air ratio of 0.021. In comparison, at this same altitude and at a peak turbine-outlet temperature of 1660° R, the combustion efficiency obtained with the configuration type 1 was 32 percent at a fuel-air ratio of 0.07 and a maximum combustion efficiency of 54 percent was obtained at a fuel-air ratio of 0.023. The peak combustion efficiency of all configurations occurs at higher fuel-air ratios as altitude is increased. The peak combustion efficiency is shown to decrease rapidly with increasing altitude for configuration types 1, 2, and 3 but to decrease only slightly for configuration types 4 and 5. The effect of altitude on exhaust-gas temperature was to decrease the temperature at a constant fuel-air ratio or to increase the fuel-air ratio required to maintain a constant temperature as altitude was increased. These trends were considerably greater for configuration types 1, 2, and 3 than for 4 and 5. The rate of increase in exhaustgas temperature with fuel-air ratio became less after peak combustion efficiency had been reached. At all altitudes, the values of combustion efficiency and exhaust-gas temperature at a given fuel-air ratio were higher for configuration types 4 and 5 than for types 1, 2, and 3. In some cases there were significant changes in combustion efficiency among the configurations within a given basic type. At an altitude of 30,000 feet, where data were obtained for all configurations, the maximum combustion efficiency of the type 1 configurations varied from 51 to 66 percent and generally occurred at a fuel-air ratio of about 0.025. Maximum efficiency variation among type 2 configurations was somewhat greater, ranging from 57 to 66 percent and occurring at a fuel-air ratio of about 0.023. Among the type 4 configurations, peak efficiency varied from 77 to 85 percent and generally occurred at a fuel-air ratio of about 0.025. The net thrust (fig. 13) reflects trends of exhaust-gas temperature and the specific fuel consumption reflects trends of exhaust-gas temperature and combustion efficiency. At an altitude of 30,000 feet and limiting turbine-outlet temperature (1760°R), type 4 configuration had a specific fuel consumption of 2.2 at a fuel-air ratio of 0.035, whereas at the peak turbine-outlet temperature of 1660°R, type 1 configuration had a specific fuel consumption of 3.7 at a fuel-air ratio of 0.07. In general, at a given tail-pipe-burner fuel-air ratio, the net thrust was higher and the specific fuel consumption was lower for configuration types 4 and 5 at all altitudes and the margin between these types and configuration types 1, 2, and 3 became increasingly greater as altitude was increased. The relative performance of the five configuration types is illustrated in terms of net thrust and specific fuel consumption in figure 14 for an altitude of 30,000 feet. The data indicated that for a given net thrust, configuration types 4 and 5 operated with lower specific fuel consumption than configuration types 1, 2, and 3. Therefore on the basis of high altitude operational limits and best performance, configuration type 4 and type 5 were the best investigated for this particular burner geometry. The burner performance was improved by the same combined factors that improved the altitude limits, namely: (1) radial fuel injection with uniform distribution over the flame holder, (2) increased fuel mixing length, and (3) a V-gutter flame holder. #### Operational Characteristics The tail-pipe-burner losses presented as $(P_5-P_7)/P_5$ in figure 15 indicate a trend of decreasing pressure-loss ratio with a decrease in blocked area for all configurations. The pressure-loss ratio for the two best configuration types, 4 and 5, was in each case lower than or equal to that of the other configuration types. The pressure-loss ratio remained approximately constant with increasing fuel-air ratio and altitude. Although the pressure-loss ratio remained constant, the actual drop in pressure across the tail-pipe burner increased with increasing fuel-air ratio and turbine-outlet total pressure. The combination of ejector and nozzle losses caused a decrease in thrust of about 1.5 percent as shown in figure 16. For this particular tail-pipe-burner installation, the over-all dimensions were fixed; consequently, to conserve tail-pipe length, the burner-inlet diffuser was relatively short. In figure 17, the velocity profiles at the diffuser inlet (station 5) and outlet (station 6) show a high velocity gradient near the outer walls and a separation from the inner cone at the inlet with a substantial growth of the boundary layer along the inner cone. It was found during the investigation that this separation along the inner cone and the exhaust-gas swirl and attendant flow separation from the lee side of the long support struts for the inner cone provided regions where burning occurred when fuel was injected near the leading edge of the struts. When fuel was injected near the inner cone and between the trailing edge of the struts and the diffuser outlet, burning took place in the region of separation from the inner cone. Therefore, the separation from both the inner cone and support struts dictated the maximum distance upstream of the diffuser outlet that the fuel injectors could be placed to increase the fuel mixing length. To increase the mixing length beyond these limits would require shortening the diffuser support struts in addition to redesigning the diffuser to prevent flow separation. In obtaining performance data for the investigation, operation of the nozzle eyelids was not required, consequently they were secured in the open position. With the exhaust nozzle in the open position, the lowered temperatures and pressures in the tail pipe imposed more severe starting conditions on the burner than are normally encountered with the nozzle closed. The two spark plugs which were provided with each of the commercially manufactured configurations usually permitted starts up to an altitude of 30,000 feet. The hot-streak ignition technique, which was used in each of the NACA configurations, permitted starts at all altitudes up to 45,000 feet, which was the maximum altitude at which starts were attempted. After about 70 hours of operation, the tail-pipe-burner shell was in good condition except for a few minor wrinkles. Considerable difficulty was experienced with the operation of the two-position variable-area exhaust nozzle because of warping and binding of the eyelids, which was probably due to misalinement or maladjustment of the actuator and actuating linkages. A number of flame holders failed structurally during the investigation because of burning upstream of the flame holder and because of poor fuel distribution. Examples of failures are shown in figures 18 to 21. Typical failures of the H-gutter and the trailing V-gutter are shown in figures 18 and 19. Usually, failures which occurred at an intersection of the V-gutters did not appear to be a fault of the weld, inasmuch as the welds were usually in good condition as shown in figure 20. In figure 21, the intense burning in the sheltered region of the V-gutter is evident by the burning out of the reinforcing tubing near the leading edge of the gutter. The V-gutter failures could usually be prevented by: (1) increasing the diameter of the flame-holder inner annular V-gutter (if it were in the region of burning off the inner cone), and (2) constructing the flame holders of heavier gage materials. During the investigation of the configurations which used the radial fuel injectors, considerable trouble was experienced with coking of the fuel-injector tubes. Radiation from the flame holder may have aggravated coking; locating the fuel injectors upstream might alleviate coking. No definite information was obtained as to the cause of this coking, but in the use of internal fuel manifolds (basic configuration types 1, 2, and 3) there were no coking problems. These manifolds had no dead ends in the flow passages which may have been the starting place for coking. #### SUMMARY OF RESULTS In an investigation of a J35-A-21 turbojet engine with a short converging conical tail-pipe burner having a two-position exhaust nozzle, a number of flame-holder and fuel-system configurations were evaluated at rated engine speed and at a constant flight Mach number of 0.6 for a range of altitudes and tail-pipe-burner fuel-air ratios. The following results were obtained: - 1. The performance characteristics and
altitude operating limits of the tail-pipe burner were improved by the combined effects of (1) radial fuel injection with uniform distribution over the flame holder, (2) increased fuel mixing length, and (3) a V-gutter-type flame holder. - 2. A maximum altitude limit of about 58,000 feet was obtained with a V-gutter flame holder. In most cases the altitude limit with the V-gutter flame holders was about 50,000 feet, and combustion efficiency, exhaust-gas temperature, and specific fuel consumption were only slightly affected by changes in altitude up to 40,000 feet. - 3. The maximum altitude limits of the H-gutter and the H-gutter with a trailing V-gutter flame holder were 40,000 and 44,000 feet, respectively. With these configurations, the combustion efficiency and exhaust-gas temperature decreased and the specific fuel consumption increased rapidly with an increase in altitude. - 4. The short tail-pipe-burner inlet diffuser had a high velocity gradient near the outer wall and separation existed at the inlet on the 176 7 inner cone with a substantial growth of the boundary layer along the inner cone. 5. With the two-position exhaust nozzle open, starting by spark plug ignition was limited to altitudes up to 30,000 feet, whereas starts with the hot-streak ignition technique were obtained at all altitudes up to 45,000 feet, which was the maximum altitude at which starts were attempted. Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio. #### APPENDIX - METHODS OF CALCULATION #### Symbols | · | | | | | | | | |-----|-----------|---------|-----|------|----|------|---------| | The | following | alodmya | are | nsed | in | this | report: | | A | area. | an | ተ | |---|--------|-----|----------| | A | ar.ea. | SQ. | Iτ | C_{d} flow (discharge) coefficient, ratio of effective flow area to measured area C^{II} thermal expansion ratio, ratio of hot exhaust-nozzle-outlet area to cold exhaust-nozzle-outlet area F thrust, 1b f/a fuel-air ratio acceleration due to gravity, 32.2 ft/sec2 g H total enthalpy, Btu/1b ha lower heating value of fuel, Btu/lb М Mach number P total pressure, lb/sq ft absolute static pressure, lb/sq ft absolute р R gas constant, $53.3 \text{ ft-lb/(lb)}(^{\circ}\text{R})$ total temperature, OR T reference temperature, 540° R T_r ٧ velocity, ft/sec air flow, lb/sec W_{A} $W_{\mathbf{f}}$ fuel flow, lb/hr gas flow, lb/sec W_{g} ratio of specific heats γ combustion efficiency η #### Subscripts: - a air - c calculated - e engine - j jet - n net - s seal - t tail pipe - ua unburned air - 0 free-stream ambient condition - l engine inlet - 3 compressor outlet - 5 turbine outlet or diffuser inlet - 6 tail-pipe-burner inlet - 7 exhaust-nozzle inlet, 5 inches forward of throat - 8 exhaust-nozzle throat #### Methods of Calculation Flight speed and Mach number. - The simulated flight speed and Mach number at which the engine and tail-pipe burner were operated were determined from the equations $$V_{O} = \sqrt{2gR \frac{\gamma_{1}}{\gamma_{1}-1} T_{1} \left[1 - \left(\frac{p_{O}}{P_{1}}\right)^{\frac{\gamma_{1}-1}{\gamma_{1}}}\right]}$$ (1) 2] $$M_{0} = \sqrt{\frac{2}{\gamma_{1}^{-1}} \left[\left(\frac{P_{1}}{p_{0}} \right)^{\frac{\gamma_{1}-1}{\gamma_{1}}} - 1 \right]}$$ (2) where γ was assumed to be 1.4. Gas flow. - The compressor-inlet air flow was computed as $$W_{a,1} = \frac{A_{1}p_{1}}{\sqrt{RT_{1}}} \sqrt{2g \frac{\gamma_{1}}{\gamma_{1}-1} \left[\left(\frac{P_{1}}{p_{1}}\right)^{\frac{\gamma_{1}-1}{\gamma_{1}}} - 1\right] \left(\frac{P_{1}}{p_{1}}\right)^{\frac{\gamma_{1}-1}{\gamma_{1}}}}$$ (3) where γ was assumed to be 1.4 and the total temperature was assumed to be equal to the indicated temperature inasmuch as the thermocouple recovery factor was 0.96. The engine air flow at station 3 was calculated by subtracting the midframe leakage and the air flow required to drive the tail-pipe-burner fuel pump from the compressor-inlet air flow. The midframe air leakage and tail-pipe-burner fuel-pump air flow were calculated in a similar manner to the compressor-inlet air flow. The total gas flow at the turbine outlet was calculated as $$W_{g,5} = W_{a,3} + \frac{W_{f,\Theta}}{3600}$$ (4) The total gas flow at the exhaust-nozzle throat was computed as $$W_{g,8} = W_{g,5} + \frac{W_{f,t}}{3600}$$ (5) <u>Turbine-outlet temperature.</u> - The turbine-outlet temperature T_5 was the measured average of 30 thermocouples. Due to questionable radiation effect on T_5 , a calculated turbine-outlet temperature T_5 , c was obtained by $$H_{5} = \left(\frac{f}{a}\right)_{e} \left[\eta_{e} h_{c} + \lambda \middle|_{T_{r}}^{5}\right] + H_{a,1}$$ (6) The value of $T_{5,c}$ was then obtained from H_5 and enthalpy charts. A value of 0.96 was selected for the engine combustion efficiency η_e from an altitude calibration of a similar engine. The term λ accounts for the difference between the enthalpy of the carbon dioxide and water TILAT. vapor in the burned mixture and the enthalpy of the oxygen removed from the air by their formation (reference 2). Comparison of these turbine-outlet temperatures can be made in table III. Tail-pipe-burner inlet velocity. - The tail-pipe-burner inlet velocity was calculated by use of the continuity equation. The static pressure and area were measured at station 6. The total pressure and temperature measurements from station 5 were used assuming no loss between the two stations. $$v_{6} = \frac{v_{g} RT_{5,c}}{A_{6} p_{6}} \left(\frac{p_{6}}{P_{5}}\right)^{\frac{\gamma_{6}-1}{\gamma_{6}}}$$ (7) The gas flow at station 6 was $W_{g,5}$ or $W_{g,8}$ dependent on the configuration inasmuch as in some configurations the tail-pipe-burner fuel was introduced upstream of station 6 and in others it was introduced downstream of station 6. Tail-pipe-burner fuel-air ratio. - Two tail-pipe-burner fuel-air ratios are used in this report and are defined as follows: (1) The ratio of the tail-pipe-burner fuel flow to engine-air flow, $$\left(\frac{f}{a}\right)_{t} = \frac{W_{f,t}}{3600 W_{a,3}} \tag{8}$$ (2) The ratio of the tail-pipe-burner fuel flow to the unburned air entering the tail-pipe burner, $$\left(\frac{f}{a}\right)_{ua} = \frac{W_{f,t}}{3600 W_{a,3} - \frac{W_{f,e}}{0.0667}}$$ (9) The assumption used in obtaining this equation was that the fuel injected in the engine was completely burned. The value of 0.0667 is the stoichiometric fuel-air ratio for the fuel used. Exhaust-gas temperature. - The exhaust-gas temperature was determined by $$T_{8} = \left(\frac{A_{8} C_{d} C_{T} p_{8}}{W_{g,8}}\right)^{2} \frac{2g}{R} \left(\frac{\gamma_{8}}{\gamma_{8}-1}\right) \left[\frac{p_{7}}{p_{8}}\right]^{\frac{\gamma_{8}-1}{\gamma_{8}}} - 1 \left(\frac{p_{7}}{p_{8}}\right)^{\frac{\gamma_{8}-1}{\gamma_{8}}}$$ (10) The flow coefficient $C_{ m d}$ was obtained from reference 3. The exhaustnozzle throat area $A_{ m S}$ was measured at room temperature. Values of the thermal expansion ratio $C_{ m T}$ of the exhaust nozzle were determined from the thermal expansion coefficient for the exhaust-nozzle material and the measured skin temperature. Exhaust-nozzle-throat static pressure p₈ was determined as follows: When $$\frac{P_7}{p_0} < \left(\frac{\gamma_8 + 1}{2}\right)^{\frac{\gamma_8}{\gamma_8 - 1}}$$ 176 then $$p_8 = p_0$$ (subsonic flow) When $$\frac{P_7}{P_0} \ge \left(\frac{\gamma_8 + 1}{2}\right)^{\frac{\gamma_8}{\gamma_8 - 1}}$$ then $$p_8 = \frac{P_7}{\frac{\gamma_8}{\gamma_8 - 1}} \text{ (sonic flow)}$$ $$\left(\frac{\gamma_8 + 1}{2}\right)^{\frac{\gamma_8}{\gamma_8 - 1}}$$ The nozzle-throat total pressure was assumed equal to the total pressure measured at station 7 (5 in. upstream of the throat). The values of γ_8 were obtained from charts of γ against f/a and T from the first approximation of T_8 which was calculated using the value of $\gamma=1.24$. Tail-pipe-burner combustion efficiency. - The tail-pipe-burner combustion efficiency was calculated by the equation $$\eta_{t} = \frac{H_{a} \int_{1}^{8} + \left(\frac{f}{a}\right)_{e} \lambda \int_{T_{r}}^{8} + \left(\frac{f}{a}\right)_{t} \lambda \int_{T_{r}}^{8} - \left(\frac{f}{a}\right)_{e} \eta_{e} h_{c}}{h_{c} \left[\left(\frac{f}{a}\right)_{t} + \left(\frac{f}{a}\right)_{e} (1 - \eta_{e})\right]}$$ (11) Dissociation was not considered in the calculation of combustion efficiency inasmuch as its effect is negligible for temperatures of up to 3600° R. The engine fuel was not assumed to be burned completely in the engine. The unburned engine fuel was charged to the tail-pipe burner. The engine combustion efficiency was selected to be a value of 0.96 which was obtained from an altitude calibration of this engine type. Thrust. - The actual jet thrust was calculated by the equation $$F_{j} = F_{d} + A_{g} (P_{1} - P_{0})$$ (12) where F_d was obtained from balanced air-pressure diaphragm measurements. Net thrust was obtained from the actual jet thrust by $$F_{n} = F_{j} - \frac{W_{a, 1} V_{0}}{g}$$ (13) The theoretical jet thrust was calculated as $$F_{j,8} = W_{g,8} \sqrt{\frac{2R}{g} \frac{\gamma_8}{\gamma_8-1} T_8 \left[1 - \left(\frac{p_8}{P_7}\right)^{\frac{\gamma_8-1}{\gamma_8}}\right]} + A_8 C_T \left[p_8 - p_0\right] (14)$$ The values of p_8 , γ_8 , and C_T used are explained in the discussion of equation (10). #### REFERENCES - 1. Fleming, W. A., Conrad, E. William, and Young, A. W.: Experimental Investigation of Tail-Pipe-Burner Design Variables. NACA RM E50K22, 1951. - 2. Turner, L. Richard, and Lord, Albert M.: Thermodynamic Charts for the Computation of Combustion and Mixture Temperatures at Constant Pressure. NACA TN 1086, 1946. - 3. Grey, Ralph E., Jr., and Wilsted, H. Dean: Performance of Conical Jet Nozzles in Terms of Flow and Velocity Coefficients. NACA Rep. 933, 1949. (Formerly NACA TN 1757.) COMP LEGIS TIAL TABLE 1. - CONFIGURATION DETAILS FOR TAIL-PIPE BURNERS INVESTIGATED ON J35-A-21 TURBOJET ENGINE | Oonf i |
gurati | on type | | | | | | Flam | e holder | | | | | | 1 | Fuel System | Diffuser | |--------|--------|--------------|------|---------------|-------------|------------------------|-----------------|--------|----------------------|---|-----------------------------|------------------------|--------------|---------------|---------------|---|----------------------| | Besic | | Photo- | | Quti | | los | MACIA
design | Posi- | Projected
blocked | | Fuel
mixing | Но | les | HA(
In jec | | Romarke | oone | | | 01F10 | graph | Туре | ure | - | Diam-
eter
(in.) | | | area
(percent) | Remarks | length (in.) (a) | | | | fig-
uro | Hemer Te | | | 1 | A
B | 4(a)
4(a) | н | 5(a)
5(b) | | 1/8 | | 1 | 25.5
25.5 | 2 annular gutters
Leeding edge curved inward
2 annular gutters | $\frac{1}{8} - \frac{7}{8}$ | 196
1 96 | 0.025 | | | 5 emmular tubes connected | Standard
Standard | | ı | c | 4(a) | | 5(b) | ٠ | 1/8 | | 1 | 25.5 | Fael deflector plates, fig-
ure 4(a), part 5
2 annular gutters
Fuel deflector plates, fig- | 7/8 | 243 | .025 | | | by radial tubes, see table II for injection direction | Standard. | | 1 | מ | 4(b) | H | 5(o) | 840 | 1/8 | | 1 | 30.9 | ure 4(a), parts 4 and 5
5 annular gutters | 1 <u>5</u> | 800 | .025 | | | J | Standard | | 2 | B | 4(a) | H-A | 5(b) | 660 | 1/8 | | 1 | 57.2 | 2 simular H-gutters with single trailing V-gutter | 7/8 | 259 | 0,025 | | | 3 annular tubes connected
by redial tubes, see | Standard. | | 2 | g
G | 4(0)
4(0) | V-H | 5(ъ)
5(ъ) | 732
732 | 1/8
1/8 | | 1 | 36.2
36.2 | 6 inches downstreem 2 annular H-gutters with single trailing V-gutter | 7/8
7/8 | 245
245 | .025
.025 | | | table II for injection direction | Standard
Standard | | 2 | п | 4(e) | H-V | 5(a) | 637 | 5/52 | | 1 | 45.3 | 4 inches downstream 2 ammler H-gutters with single trailing V-gutter 6 inches downstream Localing edge curved inward and trailing edge curved | 냶 | 201 | .025 | | | 2 annular tubes with short
radial tubes, see table II
for injection direction | Standard | | 2 | I | 4(f) | H-A | 5(•) | 73 2 | 1/8 | | 1 | 40.6 | outward 2 smmular H-gutters with 2 trailing V-gutters 6 inches downstreem | 18 | 328 | .020 | | | 5 annular tubes connected
by redial tubes
Adjacent tubes with 45°
impinging jets, see
table II | Standard | | 3 | J | 4(g) | ▼ | 5(£) | | | | 1 | 28.9 | 2 annular gutters | <u>•1</u> | 229 | 0.025 | | | 5 annular tubes connected by
redial tubes (tubes stream-
lined) see table II for
injection direction | Standard | | 4 | T | | ₹ | | | | | 1 | 29.9 | Some flame holder used in configuration J | 10 | 192 | 0.025 | 1. | 7(±) | 7 | Modified | | 4 | L | | ▼ | 6(a) | | - | 1 | 1 | 51.2 | 2 sampler gutters | 50 | 144 | .025 | ŀ | 7(b) | 12 radial tubes equally spaced circumferentially | Standard | | 4 | H | | ▼ | 6(b) | _ | _ | 2 | 1 | 55.2 | Lips on trailing edges | 5 <u>5</u> | 144 | .025 | | 7(0) | injecting fuel normal to | Standard | | 4 | 0 | | 7 | 6(o)
6(a) | | | 5
1 | 2
2 | 32.2
50.7 | 2 annular gutters
2 annular gutters | 3 | 144
144 | .025
.025 | | 7(d)
7(b) | <u> </u> | Standard
Standard | | 5 | P | | ▼ | 5(d) | | | 4 | 1 | 26.6 | Short radial gutters con-
nected by one annular
gutter | 5 8 8 | 144 | 0.025 | 2. | 7 (b) | 12 radial tubes equally spaced
circumferentially injecting
fuel normal to gas flow | Standard | a. Mixing length is defined as distance from point of fuel injection to leading edge of flame holder. Configuration Ι Ħ Part A В C D E G Fuel manifold 64^b 720 93^b 48^b 48^b 91^b (1) Number of holes 47ª 23,58 24⁶ Ring diameter 23.58 23.58 23,58 23.58 23,58 24,58 24.38 28^b Number of holes 240 24b 24b 56^b 24b 64⁰ Ring diameter 11,10 16^b 11, 10 i 15.75 24^b 11,10 22.63 11,10 11,.10 12.10 (3) Number of holes 16^b 24b £6° 12^b 16^b Ring diameter 4.58 12⁵ 11.86 7.86 12b ჳჷხ 240 12b Number of holes 12b **3**2b 12b 12b 12b 12b 8b 4b 12b 12b **8**b Rumber of holes 12þ 24b 64b 32° ď 6 12 Number of holes 12þ 72^b 72b 72^b Number of holes 40b 20p Number of holes on Fercept i 24C Number of holes 10.19 Ring diameter 80 Number of holes 4.58 Ring diameter Ö guration inches do configuration or 6 inches do Flame holder 314 368 364 364 372 I Number of holes 104 364 23.35 23,35 23.35 23.35 23.35 23.35 23.35 24.35 Ring diameter 149 192 48 192 192 256 192 Number of holes 11.00 11.00 11.00 11.00 15.44 12.00 11.00 11.00 Ring diameter 120 176 176 176 176 Number of holes 48 None None None None None None 120 64 32 7.75 None 17.18 17.18 TABLE II. - FLAME-HOLDER AND FUEL-SYSTEM PART DETAILS FOR CONFIGURATIONS A THROUGH J Deflector plate Deflector plate Number of holes Number of holes Number of holes Ring diameter Ring diameter Ring diameter None None 4 None 4 None 17.18 None 17.18 4.5 None a Downstream injection. Unstream injection 150 from flow direction. Unstream injection 450 from flow direction. d Upstream injection. CAMP | manr m | T T T | _"PRREGRANCE DATA | winds a | N TT | |--------|-------|-------------------|---------|------| | | | | | | | | WACA | - | | - | | | T = | | | | WITH TAIL | |----------|--|---------------------------------------|---------------------|---------------|---------------|---------------------|---------------------------|-------------------|-------------------|----------------------------|---------------------| | ın | Altitude
(ft) | Tail-pipe-
burner fuel | Engine
fuel con- | Jet
thrust | Net
thrust | Air con- | Specific fuel consumption | Tail-pipe | burner | Tail-pipe
burner | Tail-pipe
outlet | | | (10) | consumption | sumption | Fj | Fn | Wa | Wr/Fn | fuel-air | fuel-eir | inlet | total tem | | ı | | Wr.t | Wr,e | (1b) | (1b) | | (lb/lb thrust) | ratio
(f/a)t | ratio
(f/a)ua | velocity
V ₆ | perature
Ta | | | | (1b/hr) | (1b/hr) | ļ | |]. | | (1)4/6 | (-/-/128 | | (°R) | | ļ | | | | } | | | 1 | | 1 | (ft/sec) | (1, | | | | · · · · · · · · · · · · · · · · · · · | | | O | ONFIGURATI | ON A | ' | | | | | | 10,000 | 2400 | 3172 | 4293 | 2706 | 75.72 | 2.059 | 0.0088 | 0.0107 | 390.7 | 1751 | | | 10,000 | 4820 | 4159 | 5856 | 4291 | 75.72 | 2.093 | .0177 | .0229 | 382.6 | 2410 | | 2 | | 7070 | 4525
4805 | 6556
6838 | 4993
5270 | 75.39
75.80 | 2.322 -
2.708 | .0260
.0347 | .0347 | 572.7
574.9 | 2746
2854 | | | | 9465
9510 | 4701 | 6678 | 5143 | 74.77 | 2.763 | .0353 | .0479 | 375.3 | 2805 | | | 30,000 | 2605 | 1930 | 2745 | 2049 | 36.54 | 2.215 | 0.0198 | 0.0254 | 378.0 | 2167 | | | | 3050
3255 | 2040
2063 | 2867
2924 | 2160 | 36.24
36.58 | 2.356
2.374 | .0254 | .0305
.0323 | 380.4
376.6 | 2275
2294 | | | | 3960 | 2088 | 2905 | 2201 | 56.26 | 2.748 | .0303 | .0399 | 379.8 | | | | | 3985 | 2088 | 2924 | 2246 | 36.04 | 2.704 | .0307 | .0405 | 379.5 | 2548 | | | | | | | C | ONFIGURATI | ON B | | | , | , | | ı : | 10,000 | 2088 | 3183 | 4026 | 2514 | 75.69 | 2.097 | 0.0077 | 0.00929 | 402.8 | 1633 | | 5 |] | 3865 | 3885 | 5227 | 3687 | 75.29 | 2.102
2.348 | .0143
.0244 | .01816 | 391.6
385.2 | 2172
2649 | | ì | 1 | 6615
9945 | 4562
4894 | 6309
6655 | 4760
5125 | 75.20
75.16 | 2.895 | .0368 | .05043 | 386.0 | 2806 | | _ | L | 13290 | 4904 | 6755 | 5223 | 74.79 | 5.483 | .0494 | .06790 | 363.6 | 2792 | | <u> </u> | 30,000 | 2300 | 1885 | 2504 | 1835 | 35.59 | 2.281 | 0.0180 | 0.02303
.03862 | 385.3
383.3 | 2091
2580 | | | } | 3730
4922 | 2111
2185 | 2853
2982 | 2185
2321 | 35.62
35.45 | 2.675
3.061 | .0291
.0386 | 05187 | 379.0 | 2508 | | 1 | ! | 6495 | 2264 | 3065 | 2392 | 35.57 | 3.662 | .0507 | .06901 | 380.8 | 2508 | | (| | 8350 | 2190 | 2931 | 2270 | 35.79 | 4.643 | .0648 | 0.05893 | 381.6
427.1 | 2324
1057 | | | 40,000 | 4060
4880 | 872 ·
877 | 954
943 | 519
528 | 22.77
22.74 | 9.503 | 0.0495 _
.0596 | .07101 | 429.8 | 1062 | | | İ | 5755 | 881 | 958 | 536 | 25.09 | 12.58 | .0692 | .08231 | 424.6 | 995
1008 | | | <u> </u> | 7185 . | 861 | 959 | 538 | 22.83 | 14.96 | .0874 | .1057 | 457.4 | 1008 | | _ | 10,000 | 2365 | 3245 | 4205 | 2687 | 74.43 | 2.088 | 0.0088 | 0.0108 | 402.5 | 1737 | | 5 | 10,000 | 2380 . | 5209 |) : | | | | | | 1 1 | | | 3 | · · | 9195 | 3535 | 4647 | 3136 | 74.15 | 2.145 | .0120 | .0149 | 395.2 | 1946 | | | | 5005
6725 | 4151
4618 | 6351 | 4838 | 74.79 | 2,345 | .0250 | .0336 | 389.7 | 2672 | | <u>`</u> | L | 3005 | 5022 | 6891_ | 5379 | 73.77 | 2.608 | .0339 | 0.0264 | 392.9 | 3004 | | <u> </u> | 30,000 | 2710 . | 2025 | 2772 | 2089 | 36.97 | 2.267 | 0.0204
.0258 | 0.0264 | 385.9
381.7 | 2126
2358 | | 2 | | 3460
3925 | 2215
2279 | 3091
3136 | 2420
2471 | 37.31
36.32 | 2.345
2.511 | .0300 | .0406 | 383.7 | 2519 | | 2 | İ | 4400 | 2320 | 3175 | 2504 | 37.25 | 2.68 | .0328 | .0443 | 383.2 | 2434 | | 5
8 | | 4420
6180 | 2295
2360 | 3138
3264 | 2447
2585 | 37.09
36.86 | 2.744
3.304 | .0331 | .0446
.0635 | 387.0
382.0 | 2419
2486 | | _ | | 0100 | | 0201 | | ONFIGURATI | | | | | | | 7 | 10,000 | 2005 | 3165 | 4054 | 2516 | 74.11 | 2.055 | 0.0075 | 0.0091 | 398.6 | 1679 | | 8 | 10,000 | 4180 | 3960 | 5265 | 3736 | 75.87 | 2,179 | .0157 | .0202 | 392.4 | 2257 | | 9 | | 6725 | 4516 | 6157 | 4643 | 73.57 | 2.421 | .0254 | .0341 | 385.6
384.4 | 2656
2726 | | <u>}</u> | | 9730
12860 | 4758
4825 | 6440 | 4940
4965 | 74.21
74.90 | 2.955
3.562 | .0364 | 0652 | 387.0 | 2662 | | • | 30,000 | 2330 | 1900. | 6495.
2532 | 1815 | 34.99 | 3.562
2.265 | 0.0185 | 0.0239 | 389.6 | 2124 |
| | | 3510 | 2072 | 2816 | 2129
2295 | 35.99
36.25 | 2.528
2.941 | .0256
.0346 | .0336
.0466 | 383.5
388.1 | 2270
2353 | | 5 | | 4520
5730 ÷ | 2230
2295 | 2962 | 2233 | 35.64 | ļ l | .0447 | .0610 | 386.6 | | | <u> </u> | | 6830 | 2254 | 3033
2150 | 2376 | 35.06
28.65 | 3.825
2.479 | 0.0236 | 0.0309 | 382.9
388.3 | 2464
2181 | | | 35,000 | 2430
2980 | 1640
1693 | 2150 | 1642
1719 | 28.65
28.83 | 2.479
2.718 | 0.0256 | 0.0309 | 388.3
388.2 | 2212 | | }
} | l | 3770 | 1717 | 2295 | 1789 | 28.36 | 3.067 | .0569 | .0494 | 363.8 | 2357 | | 1 | l | 4640 | 1832 | 2422 | 1902 | 29.06 | 3.403 | .0444 | .0601 | 387.2
388.8 | 2351 | | | <u>. </u> | 4925 | 1815 | | | 28.37
ONFIGURATI | ON P | V-02 | | . 300.0 | · · · · · · | | | 70.000 | 2000 | 1970 | 2506 | 1858 | 35.07 | 2.191 | 0.0174 | 0.0224 | 385.2 | 2087 | | | 30,000 | 2200
2250 | 1870
1908 | 2506
2577 | 1892 | 35.38 | 2.187 | .0175 | -0226 | 389.8 | 2110 | | | 1 | 2250 | 1908 . | 2505 | 1848 | 34.72 | 2.250 | .0180 | .0233 | 390.3 | 2156 | | | 1 | 3160 | 2088 | 2841 | 2178 | 35.14 | 2.410 | .0250
.0330 | .0332 | 584.9
581.1 | 2585
2768 | | | | 4120
4120 | 2361
2369 | 3190
5242 | 2522
2547 | 34.63
34.99 | 2.548 | .0327 | .0461
.0456 | 384.2 | 2742 | | | ł | 5125 | 2361 | 5197 | 2539 | 34.99 | 2.948 | .0407 | .0566 | 380.9 | 2715 | | | l | 6115 | 2451 | 1 | l 'i | 34.71 | • | .0489 | .0693 | 385.1 | 2700 | | | 1 | 6505 | 2410
2393 | 3242
3249 | 2602
2586 | 34.62
35.01 | 5.426
5.442 | .0522
.0516 | .0735
.0722 | 380.2
381.9 | 2782
2707 | | | | 6507
7207 | 2377 | 3249 | 2582 | 35.15 | 5.712 | .0570 | .0793 | 380.6 | 2684 | | _ | | 7210 | 2361 | 3210 | 2543 | 35.22
29.01 | 5.764 | .0569 | .0789 | 381.0 | 2614
2180 | | | 35,000 | 2515 | 1655 | 2220 | 1684
2116 | 29.01
28.97 | 2.357
3.073 | 0.0222 | 0.0291
-0606 | 389.7
383.4 | 2180
2629 | | | 1 | 4540
7208 | 1962
1922 | 2646
2585 | 2066 | 28.68 | 4.419 | .0698 | .0968 | 384.0 | 2483 | | | 40,000 | 2640 | 1922
1305 | 1758 | 1340 | 22.26 | 2.944 | 0.0329 | 0.0436 | 389.4 | 2236 | | | ' ' | 3405 | 1482 | 1990 | 1568 | 22.54 | . 3.117 | .0420 | .0578 | 388.1 | 2493 | | | | 4160 | 1475
1504 | 1967
2039 | 1551
1620 | 22.25
22.29 | 3.633
3.965 | .0519 | .0717
.0853 | 388.4
385.3 | 2477
2585 | | | | 4920
5000 | 1657 ' | 2041 | 1621 | 22.35 | 4.045 | .0621 | .0875 | 392.6 | 2567 | | _ | <u> </u> | 8120 | 1423 | 1859 | 1441 | 22.29 | 5.235 | .0763 | .1059 | 390.9 | 2258 | | _ | - | T . | | | 1 - | ONFIGURATI | | | | | | | | 30,000 | 2500 . | 1978 | 2864 | 1248 | 35.49 | 3.588. | 0.0196 | 0.0255 | 386.4
386.7 | 2220
2340 | | | | 3349
4280 | 2110
2175 | 2846
2967 | 1457
1597 | 35.62
35.13 | 3.747
4.042 | .0358 | .0456 | 381.9 | 2525 | | • | | 5435 | 2304 | 3100 | 1724 | 35.41 | 4.489 | .0426 | 0585 | 384.3 | 2565 | | | | | | | | | | | | | | 4T. | PIPE BURNII | NG AT FLIOH | T MACH NUMBER | OF 0.6 | | | | | | NACA | مممر | |--|---------------------------------------|--|---|--|---|---|--|---|--|------| | Tail-pipe-
burner
combustion
efficiency | Engine-
inlet
total
pressure | Turbine-
outlet total
pressure
P5 | Tail-pipe-
burner
inlet
static
pressure | Tail-pipe-
burner cut-
let total
pressure | Exhaust
static
pressure
^P 0 | Engine-
inlet
total
tempera-
ture | Manufac-
turer's
control
tempera-
ture | Turbing-
outlet
total
tempera-
ture | Calculated
turbine-out-
let total
temperature | Run | | η_{t} | P ₁
(1b/sq ft) | (lb/sq ft) | P6 | P ₇
(1b/sq ft) | (lb/sq ft) | T | T ₆ | T _E | 5,0 | | | | (15) 54 15) | <u> </u> | (lb/sq ft) | (,, | | (°R) | (OR) | (°R) | (°R) | 上 | | | | · | | CONFIGURA | TION A | | | | | | | 0.6534 | 1845 | 2819 | 2547 | 2702 | 1431 | 502 | 1337 | 1352
1561 | 1334 | 1 2 | | .7600
.7119 | 1838 | 3338
3577 | 3096
3343 | 3193
3412 | 1439
1440 | 505
505 | 1560
1678 | 1673 | 1575
1662 | 3 | | .5888 | 1849 | 3692 | 3453 | 3529 | 1446 | 507 | 1706 | 1718
1702 | 1717 | 1 5 | | .5604
0.5681 | 802.8 | 3624
1529 | 3392
1415 | 3456
1460 | 1440
628.9 | 501
429 | 1697
1507 | 1497 | 1711 | + 7 | | .5276 | 806.3 | 1565 | 1452 | 1497 | 620.4 | 435 | 1532 | 1530 | 1530 | 1 8 | | .5183 | 801.4
802.8 | 1591
1588 | 1475
1478 | 1512
1517 | 530.4
520.4 | 416
428 | 157 3
1569 | 1561
1545 | 1527
1554 | 1 3 | | .4456 | 802.8 | 1584 | 1478 | 1526 | 631.2 | 428 | 1563 | 1554 | 1561 | 10 | | | | | | CONFIGURA | PION B | | | т | | _ | | 0.5454 | 1838 | 2789 | 2488 | 2651 | 1470 | 510 | 1350 | 1350 | 1342 | 1 | | .7196
.6781 | 1845
1849 | 3175
3537 | 2888
3247 | 3017
3346 | 1458
1453 | 510
510 | 1491
1659 | 1525
1702 | 1515
1674 | 12 | | .5255 | 1849 | 3675 | 5384 | 3476 | 1465 | 511 | 1733 | 1776 | 1749 | 14 | | 0.5428 | 1841
795.7 | 3698
1486 | 3394
1360 | 3495
1397 | 1450
637.3 | 510
446 | 1750
1483 | 1785
1491 | 1754 | 1 | | .4701 | 795.7 | 1592 | 1472 | 1509 | 635.8 | 442 | 1583 | 1612 | 1589 | 1 | | .4154 | 795.7 | 1634 | 1522 | 1555 | 636.5 | 440 | 1625
1639 | 1648
1663 | 1628 /
1663 | 1 | | .3245
.2271 | 797.2
795.7 | 1670
1628 | 1550
1618 | 1577
1540 | 634.9
638.8 | 439
437 | 1609 | 1637 | 1619 | 2 | | -0.0254 | 500.7 | 1628
725.0 | 627.5 | 678.3 | 397.1 | 432 | 1189 | 1637
1190 | 1202 | 15 | | 0184
0272 | 500.0
500.7 | 725.0
733.6 | 623.9
638.0 | 584.6
683.6 | 403.3
415.9 | 431
429 | 1184
1183 | 1188
1194 | 1206
1197 | 2 | | 0152 | 498.6 | 702.3 | 606.3 | 684.5 | 402.5 | 428 | 1185 | 1194 | 1187 | 2 | | | | | | CONFIGURA | TION C | | , | | , | _ | | 0.5916 | 1845
1849 | 2816 | 2527 | 2689 | 1460 | 522
515 | 1353
1366 | 1380 | 1381 | 2 2 | | .6324 | 1849 | 2973 | 2686 | 2822 | 1456 | 514 | 1398 | 1476 | 1446 | 2 | | .6661 | 1852
1849 | 3536 | 5252 | 3342 | 1464 | 514 | 1551
1691 | 1753 | 1696 | 2 2 | | .6398
0.5130 | 1845 | 3718 | 3352
1417 | 3519 | 1458 | 520 | 1775 | 1842
1534 | 1805 | | | 0.5130
.5221 | 800.0
799.3 | 1548
1648 | 1417
1519 | 1463
1564 | 626.3
635.6 | 408
405 | 1494
1585 | 1534
1625 | 1479
1559 | 3 | | .5183 | 801.4 | 1663 | 1534 | 1583 | 634.0 | 418 | 1572 | 1657 | 1626 | 3 | | .4438
.4344 | 797.2 | 1688
1674 | 1558
15 3 1 | 1599
1587 | 633.3
623.0 | 404
411 | 1633
1629 | 1674
1658 | 1609
1606 | 3 | | .343B | 795.7
795.7 | 1706 | 1582 | 1617 | 625.5 | 410 | 1658 | 1688 | 1643 | 3 | | <u> </u> | | | | CONFIGURA | TION D | | | | | | | 0.6010 | 1848 | 2791 | 2508 | 2654 | 1448 | 520 | 1522 | 1579 | 1365 | 3 | | .6828
.6472 | 1851 | 3188 | 2925
3228 | 3012
3278 | 1458
1460 | 523
523 | 1531
1684 | 1557
1718 | 1562
1697 | 3 | | .4947 | 1849
1849 | 3484
3594 | 3348 | 3380 | 1469 | 522 | 1748 | 1782 | 1738 | 4 | | .3732 | 1849 | 3624 | 3367 | 3406 | 1461 | 518
452 | 1730
1535 | 1771
1559 | 1743
1510 | 14 | | 0.5336
.4743 | 799.3 | 1469
1570 | 1349 | 1383
1481 | 624.3
628.3 | 437 | 1584 | 1601 | 1551 | 4 | | .3800 | 799.3 | 1630 | 1510 | 1536 | 641.5 | 436 | 1645
1684 | 1641
1698 | 1621
1670 | 4 | | .2923 | 799.3
797.2 | 1649
1638 | 1538
1527 | 1559
1543 | 625.6 | 436
436 | 1672 | 1678 | 1669 | 1 2 | | 0.4582 | 633.1 | 1222 | 1127 | 1154 | 508.1 | 422 | 1544 | 1558 | 1534 | 4 | | .3934
-3739 | 653.8
633.8 | 1249
1263 | 1155
1176 | 1176
1206 | 499.7
505.9 | 422
422 | 1567
1594 | 1582
1606 | 1560
1593 | 4 | | .3066 | 633.8 | 1314 | 1226 | 1241 | 508.9 | 420 | 1649 | 1665 | 1635 | [5 | | | 633.8 | 1297 | 1208 | 1227 | <u> </u> | 422 | 1629 | 1647 | 1654 | 5 | | | | 1 | - | CONFIGURA | | T | | T | T | Τ. | | 0.5511
.5552 | 796.5 | 1465
1477 | 1542
1552 | 1383
1397 | 635.2 | 448 | 1483
1497 | 1490
1515 | 1485
1502 | 5 | | .5675 | 799.3 | 1465 | 1344 | 1387 | 629.8 | 447 | 1487 | 1502 | 1521 | 5 | | .5332
.5591 | 801.4
799.3 | 1563
1688 | 1449
1576 | 1483
1587 | 631.3
622.4 | 445
445 | 1588
1725 | 1597
1722 | 1596
1744 | 5 | | .5486 | 801.4 | 1889 | 1579 | 1595 | 621.5 | 451 | 1729 | 1731 | 1743 | 5 | | .4505 | 799.5 | 1691
1716 | 1582
1604 | 1600
1622 | 633.2 | 445
445 | 1725
1746 | 1724
1746 | 1731
1787 | 5 | | .3856 | 801.4
800.7 | 1703 | 1600 | 1618 | 635.5 | 439 | 1728 | 1725 | 1764 | 6 | | .3650 | 801.4 | 1705 | 1599 | 1611 | 634.3 | 449 | 1742 | 1740 | 1753 | 6 | | .3354
.3160 | 800.7
797.2 | 1709
1687 | 1596
1589 | 1618
1597 | 632.5
630.6 | 446 | 1729
1726 | 1726
1728 | 1737
1724 | 6 | | 0.4857 | 635.8 | 1226 | 1589
1152 | 1167 | 499.8 | 417 | 1513 | 1531 | 1529 | 6 | | .3981
.2407 | 637.3 | 1380
1355 | 1290
1269 | 1308
_1280 | 503.7
506.4 | 417 | 1694
1681 | 1694
1682 | 1715
1705 | 8 | | 0.3601 | 633.8
500.7 | 968.4 | 889.4 | 918.7 | 395.4 | 430 | 1551 | 1576 | 1567 | 6 | | .3605
.2974 | 500.7
500.7 | 1051 | 975.7
970.4 | 989.2
983.3 | 596.2
396.2 | 430
428 | 1678
1667 | 1695
1681 | 1691
1701 | 6 | | .2912 | 500.7 | 1066 | 989.8 | 1010 | 396.2 | 430 | 1665 | 1707 | 1721 | 7 | | .2755
.1791 | 500.0
500.7 | 1062
1009 | 994.0
942.2 | 1010
954.5 | 593.0
395.4 |
424
427 | 1698
1619 | 1704
1642 | 1754
1658 | 7 | | | | | | CONFIGURA | | | | | | | | 0.5717 | 802.8 | , 1513 | 1399 | 1437 | 641.5 | 442 | 1515 | 1527 | 1531 | 7 | | .4883 | 799.3 | 1569 | 1462 | 1490 | 633.4 | 442 | 1576 | 1582 | 1594 | 7 | | .4677 | 799.3 | 1618 | 1499 | 1541 | 633.8 | 443 | 1606
1667 | 1613 | 1639
1693 | 7 | | .3612 | 802.8 | 1657 | 1553 | 1576 | 633.8 | 442 | 1 7001 | 1 1013 | 1 7043 | 1 | | ~ | VACA | - | | | - | | | TABLE II | I PERPO | | WITH TAIL | |--------------------------|----------|-------------------------|------------------------------|------------------------------|----------------|-------------------------|---------------------------------------|-------------------|--------------------------|-------------------------|----------------------| | Run | Altitude | | Engine | Jet | Net | Air con- | Specific fuel | | , <u> </u> | | | | | (ft) | burner fuel consumption | fuel con- | thrust | | sumption | f consumption | burner | burner | burner | outlet | | | | Writ | Wr,e | Fj | P _n | Wa | Wr/Fn | fuel-air
ratio | fuel-air
ratio | inlet
velocity | total tem- | | 1 | | (lb/hr) | (lb/hr) | (1b) | (1b) | (lb/sec) | (lb/lb thrust) | ratio
(f/a)t | (f/a)ua | Verocity | T ₈ | | l | | (10)111-1 | (25)11-1 | } | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | (ft/sec) | (°R) | | | | | | | | ONFIGURATI | ON G | <u> </u> | | <u> </u> | | | 77 | 30,000 | 2250 | 2079 | 2767 | 2105 | 35.29 | 2.057 | 0.0177 | 0.0235 | 388.2 | 2297 | | 78
79 | | 3290 | 2335 | 3073 | 2420 | 35.20 | 2.324 | .0260 | .0359 | 386.0 | 2588 | | 80 | | 4160
5440 | 2522
2580 | 3302
3372 | 2635
2710 | 35.36
35.50 | 2.536
2.959 | .0327 | .0465
.0610 | 365.6
384.7 | 2771
2816 | | | | | | | C | ONFIGURATI | ОИН | <u> </u> | <u> </u> | | | | 81
82 | 10,000 | 2040
3105 | 3085 | 5797 | 2258 | 74.57 | 2.270 | 0.0076 | 0.0092 | 405.1 | 1537 | | 83 | | 4560 | 3673
41 60 | 4787
5515 | 3245
3971 | 73.99
74.05 | 2.089
2.146 | .0117
.0164 | .0147 | 390.6
388.2 | 2022 | | 84 | 1 | 5545 | 4500 | 6021 | 4483 | 73.78 | 2.241 | .0209 | .0280 | 382.8 | 2350
2624 | | 85
86 | | 5545
6830 | 4590
4892 | 6146
6503 | 4576
4979 | 74.63
73.84 | 2.215
2.354 | .0206 | .0277 | 385.2 | 2622 | | 87 | | 8165 | 5052 | 6786 | 5259 | 73.92
35.09 | 2.513 | .0257
.0307 | .0355 | 383.7
381.2 | 2849
2950 | | 88
89 | 30,000 | 2169
3480 | 2010
2271 | 2667
3011 | 2002 | 35.09 | 2.513 | 0.0172 | .0429
.0225 | 386.6 | 2261 | | 90 | | 5205 | 2427 | 3224 | 2352
2562 | 35.30
34.83 | 2.445
2.979 | .0274
.0415 | .0374 | 382.5
382.6 | 2580
2790 | | 91 | | 7070 | 2467 | 3321 | 2638 | 35.67 | 3.615 | .0551 | .0775 | 381.6 | 2711 | | 92
93 | 40,000 | . 8345
2400 | · 2427
1400 | 1800 | 2572
1382 | 35.89
21.89 | 4.188
2.750 | 0.0305 | .0899 | 383.6
395.3 | 2610
2435 | | 94
95 | . [| 3270
4240 | 1400
1431 | 1779 | 1374 | 22.16 | 3.399 | .0410 | .0558 | 393.3 | 2363 | | 96 | | 5105 | 1371 | 1778
1722 | 1358
1297 | 22.20
22.03 | 4.176
4.993 | .0531 | .0725
.0869 | 398.6
395.3 | 2299
224I | | | | | | | CC | ONFIGURATI | ON I | | | | | | 97 | 30,000 | 2345 | 1939 | 2562 | 1891 | 34.88 | 2.265 | 0.0187 | 0.0245 | 491.7 | 2205 | | 98
99 | | 2345
3055 | 1970
2058 | 2613
2703 | 1968 | 34.99 | 2.193 | .0186 | .0243 | 487.5 | 2260 | | 100 | | 3785 | 1970 | 2550 | 2038
1877 | 34.66
34.66 | 2.509
3.066 | .0245 | .0525
.0397 | 496.7
492.8 | 2563
2206 | | 101 | | 4280
5205 | 1931
1821 | 2519 | 1858 | 34.75 | 3.343 | .0342 | .0445 | 489.4 | 2159 | | 102 | 1 | 3203 | | 2391 | 1731
CC | 34.69
ONFIGURATI | 4.059
ON J | .0417 | .0533 | 486.3 | 1990 | | 103 | 10,000 | 2710 | 3563 | 4615 | 3098 | 74.93 | 2.025 | 0.0100 | 0.0125_ | 397.8 | 1827 | | 104 | 30,000 | 4080
2418 | 4059
2120 | 5330
2811 | 2151 | 35.01 | 7.4.1 | 0.0192 | .0257 | | | | 106 | | 2980 | 2200 | 3044 | 2377 | 35.36 | 2.179 | .0234 | .0516 | 392.3
379.5 | 2550
2559 | | 108 | | 3750
4520 | 2485
2570 | 3197
3386 | 2538
2730 | 35.17
35.53 | 2.457 | .0296
.0353 | .0420 | 393.3 | 2741 | | 109 | | 5330 | 2690 | 3483 | 2831 | 34.91
21.97 | 2.853 | .0424 | .0624 | 390.6
393.5 | 2844
3030 | | 110
111 | 40,000 | 1690
2260 | 1269
1468 | 1626
1977 | 1224
1567 | 21.97
21.98 | 2.417 | 0.0214 | .0281 | 404.8 | 2060 | | 112
113 | İ | 2980 | 1625 | 2078 | 1667 | 22.09 | 2.592 | .0375 | .0540 | 398.4
406.5 | 2546
2690 | | -10 | | 3750 | 1679 | 2184 | 1769 | 22.04
OMFIGURATION | 3.058 | .0470 | .0688 | 406.8 | 2810 | | 114 | 30,000 | 1637 | 1985 | 2616 | 1949 | 36.19 | | 2 01050 | | | | | 115 | | 2070 | 2239 | 2943 | 2284 | 36.04 | 1.858 | 0.01256
.01595 | 0.0163 | 394.5
391.8 | 2025 | | 116 | - | 2500
3120 | 2418 | 3199 | 2530 | 36.00 | 1.944 | .01929 | .0268 | 391.4 | 2643 | | 117
118 | 40,000 | 930 | 2564
1239 | 3354
1605 | 2678 | 36.18
22.61 | 2.122
1.818 | 0.01143 | 0.0148 | 391.0
406.3 | 2799
1940 | | 119.
120 | | 1240
1601 | 1386 | 1839 | 1422 | 22.57 | 1.847 | .01526 | .0205 | 402.0 | 2265 | | 121 | - 1 | 1990 | 1519
1609 | 2027 | 1606
1696 | 22.54 | 1.943
2.122 | .01973 | .0274 | 399.2
397.9 | 2556
2759 | | | | | | | | NFIGURATIO | | .02200 | .0330 | 387.9 | 2/39 | | 122 | 10,000 | 2365 | 3536 | 4671 | 3150 | 75.54 | 1.873 | 0.0087 | 0.0108 | 395.7 | 1844 | | 125
124 | | 2890
3945 | 5812
4187 | 5051
5602 | 3529
4080 | 75.06
74.90 | 1.899 | .0107 | -0136 | 395.5 | 2054 | | 125 (| . | 4720 | 4397 | 5909 | 4374 | 75.40 | 2.084 | .0146 | .0191 | 389.8
390.6 | 2350
2464 | | 126
127 | 50,000 | 7960
1419 | 5012
1770 | | 5218
1657 | 75.03
35.44 | 2.486 | .0295 | .0408 | 385.7 | 2901 | | 128 | , | 1558 | 1886 | 2624 | 1960 | 35.21 | 1.925
1.757 | .0123 | 0.0140
.0158 | 396.4
384.7 | 1852
2156 | | 129 | | 2298
2450 | 2206
2247 | 2993 | 2340 | 35.00
34.97 | 1.925 | .01824 | .0247 | 384.9 | 2597 | | 131 | | 2978 | 2377 | 3210 | 2544 | 35.38 | 1.964
2.105 | .0195 | .0266 | 386.2
386.6 | 2600
2738 | | 132
133 | | 3350
5750 | 2443
2522 | 3242 | 2592
2698 | 34.81 | 2.235 | .0267 | .0378 | 389.3 | 2835 | | 134 | | 4320 | 2532 | 5393 | 2726 | 35.04
35.35 | 2.317 | .02957 | .0422 | 388.4
387.7 | 2679
2899 | | 135
136 | - | 4440 | 2555
2548 | | 2743
2700 | 35.09 | 2.550 | .03515 | .0504 | 387.7 | 2951 | | 137 | 40,000 | 5540
1515 | 1512 | 2040 | 1642 | 35.01
22.47 | | 0.0187 | 0.0260 | 389.4
394.7 | 2888
2590 | | 138 | | 2005
2460 | 1840
1701 | | 1788
1865 | 22.53
22.65 | 2.062 | .0247 | .0355 | 395.6 | 2817 | | 140 | 1 | 2620 | 1678 | 2249 | 1840 | 22.25 | 2.336 | .0302 | .0439 | 393.3
393.9 | 2933
2989 | | 141 | 1 | 2840 | 1718 | 2558 | 1835 | 22.24 | 2.484 | .0355 | .0523 | 398.6 | 2972 | | | 30,000 | 1742 | 2040 | 0704 | | NFIGURATIO | · · · | · | | | | | | 30,000 | 2200 | 2048
2245 | | 2052 | 34.62
35.26 | 1.846 | .0140 | 0.0185 | 393.9
389.9 | 2295
2493 | | 142 | | 2620 | | | 2477 | 35.26 | 2.031 | .0206 | .0289 | 394.4 | 2648 | | 143 | | | | | | | | | | | | | 143
144
145
146 | | 3015
3580 | 2515 | 3311 | 2630
2808 | 35.78
35.35 | 2.105 | .0234 | .0351 | 402.4 | 2747 | | 143
144
145
146 | 40,000 | 3015
3580
1641 | 2515
2675
1541 | 3311
3455
2016 | 2808
1813 | 35.35
22.57 | 2.228 | .0202 | .0351
.0411
0.0282 | 402.4
594.2
397.8 | 2747
3006
2546 | | 143
144
145
146 | 40,000 | 3015
3580 | 2515
2675
1541
1632 | 3311
3455
2016
2146 | 2808 | 35.35 | 2,228 | .0281 | .0411 | 394.2 | 3006 | | PIPE BURNIN | O AT FLIGHT | MACH NUMBER | OF 0.6 - C | ONTINUED . | | | | | NACA, | سمم | |--|---|--|---|--|---|---|--|---|--|----------------| | Tail-pipe-
burner
ombustion
fficiency
$\eta_{\rm t}$ | Engine-
inlet
total
pressure
Pl
(lb/sq ft) | Turbine-
outlet total
pressure
P5
(lb/sq ft) | Tail-pipe-
burner
inlet
static
pressure
Ps
(lb/sq ft) | Tail-pipe-
burner out-
let total
pressure
P ₇
(1b/sq ft) | Exhaust
static
pressure
p _O
(lb/sq ft) | Engine-
inlet
total
tempera-
ture
T ₁ | Manufac-
turer's
control
tempera-
ture
T ₆ | Turbine-
outlet
total
tempera-
ture
T ₅ | Calculated
turbine-out-
let total
temperature
T, c | Run | | | L | | (10/80 10/ | CONFIGURAT | TON G | (1) | | (1.) | | ٠ | | 0.6513 | 801.4 | 1577 | 1451 | 1487 | 635.5 | 439 | 1546 | 1552 | 1585 | 77 | | .5865
.5434
.4497 | 800.0
800.0
802.1 | 1691
1777
1807 | 1550
1640
1668 | 1587
1660
1693 | 634.7
630.8
636.3 | 437
453
432 | 1677
1762
1771 | 1649
1721
1779 | 1708
1793
1814 | 78
79
80 | | | | | | CONFIGURAT | TION H | | | | | | | 0.3696
.6871 | 1856 T | 2733
3070 | 2444
2807 | 2555
2864 | 1464
1462 | 523
526 | 1313
1481 | 1355
1502 | 1344
1495 | 81 | | .7235
.7448 | 1858
1858 | 3500
3479 | 3049
3230 | 5082
3244 | 1462
1462 | 528
528 | 1580
1669 | 1619
1713 | 1611 | 83 | |
.7463 | 1856 | 3520 | 3269 | 3279 | 1458 | 526 | 1666 | 1709 | 1700 | 85 | | .7213
.6603 | 1853
1856 | 3638
_ 3741 | 5398
5493 | 3392
3482 | 1458
1463 | 526
524 | 17 47
1791 | 1778
1837 | 1780
1815 | 86 | | 0.6551 | 799.3 | 1523 | 1408 | 1450 | 632.9 | 44.7 | 1526 | 1555 | 1559 | 88 | | .4611 | 800.0 | 1650
1712 | 1548
1615 | 1550
1611 | 638.4
632.9 | 446
446 | 1653
1725 | 1872
1739 | 1683
1777 | 89 | | .3462
.2834 | 801.4 | 1751
1730 | 1640
1622 | 1640
1628 | 635.7
634.5 | 445 | 1744 | 1755
_1754 | 1762
1738 | 91 | | 0.4386 | 499.5 | 998.9 | 926.0 | 937.5 | 395.8 | 450 | 1655 | 1675 | 1882 | 93 | | .3217
.2358 | 501.4
500.0 | 1005 | 932.4
938.7 | 944.9
941.7 | 402.8
400.1 | 450
449 | 1649 | 1672
1686 | 1662
1687 | 94 | | .1972 | 500.7 | 989.2 | 919.0 | 929.6 | 398.2 | 450 | 1623 | 1648 | 1652 | 96 | | 0.5778 | 802.8 | 3400 | 999.3 | CONFIGURAT | 630 | 458 | 1512 | 1538 | 7527 | 97 | | .6307 | 799.3 | 1489
1512 | 1010 | 1407
1430 | 632 | 439 | 1496 | 1516 | 1537
1534 | 98 | | .5225
.3717 - | 800.0 | 1544
1490 | 1027
1013 | 1455
1415 | 652
650 | 458
459 | 1566
1525 | 1589
1549 | 1607
1563 | 1100 | | .3243 | 801.4 | 1485 | 1005 | 1411 | 635 | 458 | 1518 | 1536 | 1537 | 101 | | .2256 | 799.3 | 1457 | 974.6 | CONFIGURAT | 532 | 458 | 1461 | 1486 | 1485 | 102 | | 0-5814 | 1854 | 3006 | 2568 | 2821 | 1458 | 508 | Γ — | 1436 | 1458 | 103 | | 0.6184 | 1856
801.4 | 3265
1572 | 2945
1422 | 5077
1487 | 1460
624.7 | 433 | | 1564 | 1607 | 104 | | .6501 | 801.4 | 1673 | 1508 | 1572 | 625.4 | 433 | 1 | 1638 | 1635 | 108 | | .5806
.5407 | 801.4 | 1724
1787 | 1584
1634 | 1635
1689 | 625.8
628.9 | 430
430 | ł | 1709
1764 | 1778
1807 | 107 | | .5173
0.5983 | 801.4
501.4 | 1810
924.6 | 1670
835.2 | 1725
879.2 | 626.2
392.1 | 436
426 | | 1821
1499 | 1889 | 109 | | .5111 | 501.4 | 1047 | 935.9 | 985.7 | 389.8 | 427 | (| 1644 | 1714 | נומ | | .4357
.3961 | 501.4
500.7 | 1083
1121 | 986.6
1008 | 1027
1055 | 391.3
387.1 | 426
428 | Ĺ | 1719
1775 | 1826
1876 | 112 | | | | , | | CONFIGURAT | TION K | | | | , | | | 0.6475 | 800.0 | 1489 | 1363 | 1420 | 632.4 | 422 | · · | 1525 | 1495 | 114 | | .7807
.7994 | 800.0 | 1620
1696 | 1486
1569 | 1545
1620 . | 637.3
832.4 | 425
426 | | 1644
1723 | 1625
1712 | 115 | | 7326
0.5949 | 801.4
502.1 | 1766
909.6 | 1640
823.2 | 1680
868.6 | 633.1
399.3 | 430
420 | | 1798
1515 | 1778
1493 | 117 | | .6861 | 501.4 | 985.5 | 897.2 | 939.3 | 395.8 | 419 | <u> </u> | 1620 | 1609 | 1115 | | .7127
.6855 | 501.4 | 1053
1092 | 959.1
1002 | 999.8
1038 | 392.2
392.9 | 420
421 | Ì | 1711 | 1711
1784 | 121 | | - 10003 | 1 00011 | 1 | | CONFIGURAT | | <u> </u> | L | | | _E | | 0.7034 | 1858 | 3017 | 2682 | 2853 | 1467 | 508 | 1477 | 1435 | 1426 | 122 | | .7831
.8247 | 1858
1858 | 3147
5356 | 2808
3013 | 2983
3180 | 1462 | 508
507 | 1554
1656 • | 1497
1585 | 1499
1587 | 123 | | .7760 | 1856 | 3465 | 3120 | 3279 | 1458 | 508 | 1718 | 1640 | 1630 | 125 | | 0.5507 | 1859
800.0 | 3763
1407 | 3428
1260 | 3586
1328 | 1455
629.6 | 506
443 | 1873
1508 | 1786
1432 | 1777 | 127 | | .8079
.8458 | 801.4 | 1505
1643 | 1344
1487 | 1422
1557 | 629.8
633.6 | 434
437 | 1549
1691 | 1474 | 1487
1654 | 128 | | -7863 | 801.4 | 1661 | 1502 | 1567 | 635.6 | 437 | 1740 | 1636 | 1673 | 130 | | .7444
.6915 | 800.0 | 1751
1736 | 1566
1580 | 1651
1638 | 633.6
635.6 | 440 | 1781
1847 | 1698
1730 | 1725
1780 | 132 | | .6474
.5885 | 801.4 | 1785
1795 | 1623 | 1678 | 636.4
634.7 | 457 | 1830
1898 | 1742
1766 | 1806
1804 | 133 | | .5884 | . 108 | 1800 | 1633
1640 | 1693
1596 | 629.6 | 441 | 1869 | 1 -1787 | 1825 | 113. | | .4626
0.7857 | 801.4
500.0 | 1786
1068 | 1635
961.2 | 1688
1005 | 628.7
400.0 | 449 | 1931
1735 | 1808
1623 | 1829
1703 | 136 | | .7184 | 501.4 | 1121 | 1016 | 1057 | 400.0 | 408 | 1835 | 1710 | 1796 | 11.38 | | .6517
.6338 | 500.7
500.7 | 1158
1143 | 1051
1040 | 1089
1082 | 397.0
396.3 | 411 | 1881
1875 | 1759
1773 | 1840
1853 | 139 | | .5722 | 501.4 | 1145 | 1046 | 1082 | 402.0 | 417 | 1894 | 1778 | 1883 | 141 | | 0.7755 | 800.7 | 1552 | 1800 | CONFIGURAT | FION M
631.9 | 465 | | 1633 | 1605 | 142 | | .7737 | 801.4 | 1649 | 1396
1499 | 1446
1540 | 637.4 | 446 | 1 | 1674 | 1671 | 143 | | 7747 | 802.1
803.5 | 1697
1766 | 1551
1576 | 1592
1646 | 635.5
633.8 | 440
439 | 1 | 1722
1782 | 1746
1776 | 144 | | -7367
-7333 | | | | | | | ł | | 1 110 | 1.7 | | .7111
.7254 | 801.4 | 1830 | 1653 | 1717 | 638.5 | 431_ | ⊢ | 1813 | 1860 | 146 | | .7111 | 801.4
499.3
499.3
499.3 | 1830
1110
1108 | 1653
968.3
1012 | 998
1047 | 404.5
396.8 | 426
416 | | 1719
1740 | 1860
1737
1789 | 167 | | | ACA | | | | | | | <u> </u> | | · | ' . | |------------|------------------|---------------------------|------------------|----------------------|---------------|----------------------|--|---------------------|------------------------------|----------------------------|-----------------------| | Run | Altitude
(ft) | Tail-pipe-
burner fuel | | Jet
thrust | Net
thrust | Air con-
sumption | Specific fuel consumption W _f /F _n | Tail-pipe
burner | Tail-pipe-
burner | Tail-pipe-
burner | Tail-pipe
outlet | | 1 | | consumption | sumption | F _j (1b) | Fn | Wa | W _f /F _n | fuel-air | fuel-air | inlet | total tem | | | | W _{f,t} | ₩ _{f,e} | (1Ď) | (1b) | (lb/sec) | (1b/lb thrust) | (f/a). | ratio
(f/a) _{ua} | velcoity
V ₆ | T ₈ | | - 1 | | (1b/hr) | (1b/hr) | | | | | 1-/-/8 | \-'/"/ua | , VB | (°R) | | | | | | | | | | | | (ft/sec) | (°R) | | | | | | | C. | ONFIGURAT | ION N | | | | | | 51 | 30,000 | 1810 | 2024 | 2705 | 1998 | 35.59 | 1.919 | 0.0141 | 0.0185 | 404.5 | 2203 | | 52
53 | • | 1895
2165 | 2072
2182 | 2720
2912 | 2025 | 35.32 | 1.961 | .0149 | .0197 | 401.9
401.2 | 2290 | | 54 | | 2535
2535 | 2311 | 3098 | 2192
2372 | 35.83
35.87 | 2.043 | .0169
.0196 | .0258 | 397.7 | 2402
2613 | | 55 | | 2800 | 2427 | 3218 | 2513 | 35.54 | 2.080 | .0518 | .0306 | 402.0 | 2788 | | 56 | 40,000 | 1257 | 1319 | 1804 | 1372 | 22.71 | 1.878 | 0.0154 | 0.0203 | 402.0
395.7 | 2788
2246 | | 57 | | 1454 | 1451 | 1905 | 1468 | 22.64 | 1.979 | .0178 | .0245 | 407.6 | 2432 | | 58
59 | - | 1678
1895 | 1533
1609 | 2055
2100 | 1618
1649 | 22.63
22.88 | 1.985
2.125 | .0206 | .0287 | 405.7
408.5 | 2621 | | 60 | | 1914 | 1610 | 2083 | 1638 | 22.65 | 2.151 | .0235 | .0333 | 406.9 | 2707
2760 | | 61 | | 2070 | 1540 | 2115 | 1682 | 22.65 | 2.206 | .0254 | .0363 | 406.8 | 2809 | | | | | | | C | ONFIGURATI | ION O | | | | , | | 62 | 10,000 | 2218 | 5540 | 4370 | 2853 | 76.04 | 1.948 | 0.0081 | 0.0099 | 405.6 | 1684 | | 63 | | 3050 | 3871 | 5162 | 3618 | 76.34 | 1.913 | .0111 | .0141 | 399.7 | 2051 | | 64
65 | | 4040
5020 | 4250 | 5726 | 4184 | 78.02 | 1.981 | .0148
.0183 | .0192 | 395.9 | 2522 | | 66 | | 5880 | 4575
4730 | 6144
6461 | 4583
4929 | 76.14 75.75 | 2.094 | .0216 | .0244 | 395.5
390.3 | 2539
2686 | | 67 | | 6762 | 4932 | 6661 | 5111 | 75.68 | 2.288 | .0248 | .0341 | 391.9 | 2805 | | 68 | 30,000 | 1839 | 2071 | 2791 | 2113 | 35.97 | 1.850 | 0.0142 | 0.0187 | 596.2 | 2280 | | 69 | | 2362 | 2254 | 2982 | 2300 | 35.64 | 2.007 | .0184 | .0250 | 398.0 | 2527 | | 70
71 | | 2752
3179 | 2337
2484 | 3057
3309 | 2395
2638 | 35.13
35.78 | 2.125
2.147 | .0218
.0247 | .0301 | 396.8
397.6 | 2702
2831 | | 72 | | 3400 | 2460 | 3228 | 2552 | 35.39 | 2.296 | 0267 | 0376 | 595.2 | 2828 | | 73 | 40,000 | 1280 | 1356 | 1950 | 1512 | 22.60 | 1.745 | 0.0157 | 0.0210 | 403.9 | 2270 | | 74 | | 1648 | 1490 | 1985 | 1571 | 22.58 | 1.997 | .0203 | .0280 | 400.4 | 2518 | | 75
76 - | | 1925
2230 | 1553
1625 | 2057
21 34 | 1640
1712 | 23.00 | 2.121
2.252 | .0232 | .0323 | 400.7
598.8 | 2589
2777 | | 77 | | 2480 | 1700 . | 2226 | 1809 | 23.10 | 2.311 | .0298 | .0430 | 401.6 | 2846 | | | | | | | CX | ONFIGURATI | ON P | | | | | | 78 | 10,000 | 1945 | 3373 | 4247 | 2682 | 76.18 | 1.983 | 0.0071 | 0.0087 | 403.4 | 1714 | | 79
80 | - | 2780
3730 | 3825
4159 | 5058
5554 | 3496
4009 | 76.25
75.44 | 1.889 | .0101
.0137 | .0128
.0178 | 395.2
390.6 | 2056
2345 | | 81 | | 4724 | 4480 | 6014 | 4480 | 75.72 | 2.054 | .0175 | .0230 | 388.8 | 2559 | | 82 | | 5880 | 4759 | 6399 | 4857 | 75.61 | 2.190 | 0216 | .0293 | 386.5 | 2770 | | 83 | 30,000 | 1461 | 1900 | 2554 | 1653 | 36.45 | 1.814 | 0.0111 | 0.0142 | 395.9 | 2013 | | 84 | | 1960 | 2128 | 2830 | 2154 | 35.59 | 1.898 | .0153 | .0204 | 591.7 | 2395 | | 85
86 | | 2624
3370 | 2529
285 | 3099
3297 | 2422 | 35.64
35.84 | 2.045 | .0205
.0261 | .0281 | 590.6
391.7 | 2679
28 4 2 | | 87 | ľ | 4150 | 2614 | 3431 | 2765 | 35.34 | 2.446 | .0326 | .0307 | 387.1 | 3085 | | 88 | 40,000 | 1667 | 1533 | 2125 | 1719 | 22.85 | 1.862 | 0.0203 | 0.0281 | 395.8 | 2643 | | 89 | | 2005 | 1610 | 2133 | 1720 | 23.15 | 2.102 | .0241 | .0339 | 395.5 | 2745 | | 90 | | 2400 | 1678 | 2194 | 1761 | 23.27 | 2.316 | .0286 | .0409 | 393.4 | 2863 | | 91 | | 2905 | 1736 | 2180 | 1761 | 25.18 | 2.635 | .0348 | .0506 | 398.6 | 2914 | WAR DESCRIPTION 2176 #### PIPE BURNING AT BLIGHT MACH NUMBER OF O.6 - CONCLUDED | TIPE DOMEST | NO AT FLIGH | T MACH NUMBER | OF 0.6 - C | ONCLUDED | | | • | | MACA | للمممم |
--|---|---|--|--|--|---|--|--|--|--| | Tail-pipe-
burner
combustion
officiency
n _t | Engine- inlet total pressure P1 (lb/sq ft) | Turbine-
outlet-total
pressure
F5
(lb/sq ft) | Tail-pipe-
burner
inlet
static
pressure
P8
(lb/sq ft) | Tail-pipe-
burner out-
let total
pressure
P7
(lb/sq ft) | | Engine- inlet total tempera- ture T (°R) | Manufac-
turer's
control
tempera-
ture
T ₆ | Turbine-
outlet
total
tempera-
ture
T ₅ | Cziculated
turbine-out-
let total
temperature
T5,c
(CR) | Rur | | - | • | | • | CONFIGURA | TION N | | | | | | | 0.7266
.7534
.7490
.7879
.8034 | 802.1
802.1
801.4
802.8
802.8 | 1524
1544
1607
1678
1709 | 1340
1368
1420
1488
1523 | 1442
1460
1517
1586
1627 | 615.1
615.1
610.4
611.6
614.7 | 441
441
440
443
440 | | 1577
1604
1663
1734
1772 | 1548
1579
1615
1676
1745 | 15:
15:
15:
15: | | 0.7166
.7105
.7333
.7030
.7204
.6931 | 500.7
500.7
501.4
500.7
500.7
501.4 | 985.4
1022
1060
1088
- 1088
1103 | 875.3
907.7
947.1
974.6
975.3
989.4 | 933.6
964.9
1003
1033
1033
1044 | 585.7
584.1
584.8
580.2
579.4
387.2 | 420
420
420
420
422
421 | | 1399
1670
1731
1773
1781
1799 | 1542
1656
1718
1760
1772
1797 | 150
150
150
160
160 | | | | | | CONFIGURA | TION O | | | | | | | 0.5636
.7616
.7901
.7869
.7682
.7851
0.7880
.7853
.7471
.6910
0.8937
.6836
.6411
.6437
.6209 | 1856
1858
1858
1858
1857
801.4
800.7
801.4
800.7
500.7
500.7
500.7 | 2909
5195
5381
3556
3635
3635
3711
1574
1641
1681
1756
1756
982.5
1047
1085
1119
1138 | 2506
2797
2988
3140
3242
3317
1391
1470
1506
1561
1567
678.1
940.1
940.1
940.1
940.1
940.1 | 2726
2896
5173
3521
3405
1482
1548
1584
1654
1654
929.7
982.7
1018
1047
1075 | 1471
1467
1467
1457
1469
1456
634.5
631.7
631.7
631.7
631.7
9394.4
397.9 | 498
500
501
502
502
434
440
448
435
418
418
418
416
421
416 | | 1407
1535
1620
1698
1742
1779
1585
1687
1777
1797
1589
1684
1735
1788
1825 | 1368 1492 1561 1656 1694 1742 1555 1661 1722 1758 1768 1587 1685 1714 1778 | 16
16
16
16
16
18
17
17
17
17
17
17 | | | • | | | CONFIGURA | TION P | | | | | | | 0.6651
.8448
.8780
.8559
.8207 | 1857
1859
1857
1858
1858 | 2874
3149
3320
3479
3614 | 2577
2830
3012
3173
3532 | 2754
3001
3163
3317
3454 | 1461
1464
1481
1470
1467
625 | 511
511
510
510
512 | 1479
1604
1704
1789
1877 | 1416
1525
1614
1685
1746
*1509 | 1382
1485
1575
1643
1713 | 170
170
180
181
181 | | .8290
.7972
.7160
.6938
0.7730 | 802.8
802.8
803.5
802.8
600.7
499.3 | 1478
1578
1674
1742
1805 | 1527
1438
1541
1606
1666
975.3 | 1409
1506
1500
1664
1719
1020 | 629.4
632.2
625.1
632.5
594.7 | 435
438
440
441
437
416 | 1714
1828
1917
1972 | 1509
1626
1726
1791
1841
1720
1780
1802 | 1595
1697
1764
1833 | 18
18
18
18
18
18
18 | | .7128
.6661
.5714 | 500.7
502.8
500.0 | 1104
1139
1149 | 1013
1049
1060 | 1054
1087
1098 | 399.8
394.3
396.3 | 414
412
410 | 1877
1910
1951 | 1802
1843 | 1740
1783
1831 | 19 | Figure 1. - Installation of engine and tail-pipe-burner assembly in altitude chamber. Figure 2. - Schematic drawing of engine and tail-pipe burner in altitude chamber. Figure 3. - Schematic drawing of typical tail-pipe-burner assembly. CONTEDUNDIAL (a) Photograph and cross section of typical H-gutter flame-holder unit, configurations A, B, and C. Figure 4. - Commercial flame-holder and fuel-system units. NACA RM E51E03 (b) Photograph and cross section of H-gutter flame-holder unit, configuration D. Figure 4. - Continued. Commercial flame-holder and fuel-system units. (c) Photograph and cross section of typical H-gutter flame-holder with trailing V-gutter, configurations E, F, and G. Figure 4. - Continued. Commercial flame-holder and fuel-system units. 6T (d) Typical trailing V-gutter, configurations E, F, and G. Figure 4. - Continued. Commercial flame-holder and fuel-system units. **自由于企业主义等等** -----1 • T Flame holder Fuel manifold (e) Photograph and cross section of H-gutter with trailing V-gutter, configuration H. Figure 4. - Continued. Commercial flame-holder and fuel-system units. ----1 0 Trailing V-gutte Flame holder (f) Photograph and cross section of H-gutter flame holder with two trailing V-gutters, configuration I. Figure 4. - Continued. Commercial flame-holder and fuel-system units. • V-gutter Streamlined fuel-manifold (g) Photograph and cross section of V-gutter flame holder, configuration J. Figure 4. - Concluded. Commercial flame-holder and fuel-system units. The same of sa • • .. .-. ---. . . - - - ---. -. :• = 7 . Figure 5. - Cross sections of commercial flame-holder and fuel-manifold units. (a) Flame holder 1 used in configuration L and O. (b) Flame holder 2 used in configuration M. Figure 6. - Schematic diagrams of WACA designed flame holders. (c) Flame holder 3 used in configuration N. (d) Flame holder 4 used in configuration P. Figure 6. - Concluded. Schematic diagrams of NACA designed flame holders. 389-2155 Figure 7. - Schematic diagrams of fuel injectors. All holes 0.025" diam. Section A-A (a) Turbine outlet (diffuser inlet), station 5, $4\frac{1}{2}$ inches downstream of turbine flange. (b) Burner inlet, station 6, 1 ½ inches upstream of diffuser outlet flange. (c) Exhaust-nozzle inlet, station 7, 5 inches upstream of outlet. Figure 8. - Location of pressure and temperature instrumentation installed in engine and tail-pipe burner; looking downstream. Figure 9. - Operable range of tail-pipe-burner configurations. Flight Mach number, 0.60. 9LTZ. Figure 9. - Continued. Operable range of tail-pipe-burner configurations. Flight Mach number, 0.60. Figure 9. - Continued. Operable range of tail-pipe-burner configurations. Flight Mach number, 0.60. STVP (o) Configuration type 4, configuration 0. (p) Configuration type 5, configuration P. Figure 9. - Concluded. Operable range of tail-pipe-burner configurations. Flight Mach number, 0.60. NACA RM E51E03 COMPTENIES. Figure 10. - Variation of operable range of several tail-pipe-burner configurations. Flight Mach number, 0.60. 92TZ... Figure 11. - Variations of tail-pipe-burner inlet conditions with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. Figure 11. - Continued. Variations of tail-pipe-burner inlet conditions with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. SALAN MER WAY BY WAY Figure 11. - Concluded. Variations of tail-pipe-burner inlet conditions with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. Figure 12. - Variations of tail-pipe-burner combustion efficiency and exhaust-gas total temperature with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. Figure 12. - Continued. Variations of tail-pipe-burner combustion efficiency and exhaust-gas total temperature with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. (b) Altitude, 30,000 feet. Figure 12. - Concluded. Variations of tail-pipe-burner combustion efficiency and exhaust-gas total temperature with tail-pipeburner fuel-air ratio. Flight Mach number, 0.60. Figure 13. - Variations of specific fuel consumption and net thrust with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. (a) Altitude, 10,000 feet. Figure 13. - Continued. Variations of specific fuel consumption and net thrust with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. CONFIDENTIAL Figure 13. - Concluded. Variations of specific fuel consumption and net thrust with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. Figure 14. - Variation of not thrust and specific fuel consumption for several configurations at altitude of 30,000 feet and flight Mach number of 0.60. Figure 15. - Variation of tail-pipe-burner total-pressure-loss ratio with tail-pipe-burner fuel-air ratio. Flight Mach number, 0.60. Figure 16. - Variations of tail-pipe-burner scale to theoretical thrust ratio with exhaust-nozzle pressure ratio. Figure 17. - Burner-inlet diffuser velocity profiles at inlet and outlet.
Engine speed, 7900 rpm; flight Mach number, 0.60; altitude, 30,000 feet; exhaust nozzle closed (no burning). Figure 18. - Typical H-gutter failure and trailing V-gutter failure at intersecting gutters and support. Figure 19. - Typical H-gutter failure and trailing V-gutter failure on surfaces not obstructed by intersecting gutters. -- Figure 20. - Typical V-gutter failure at a gutter intersection. Confidence of the State Figure 21. - Typical V-gutter failure at gutter intersections and in sheltered region.